Altered cardiac Na(+)/H(+) exchange in phospholipase D-treated sarcolemmal vesicles.

نویسندگان

  • D P Goel
  • A Vecchini
  • V Panagia
  • G N Pierce
چکیده

Cardiac sarcolemmal Na(+)/H(+) exchange is critical for the regulation of intracellular pH, and its activity contributes to ischemia-reperfusion injury. It has been suggested that the membrane phospholipid environment does not modulate Na(+)/H(+) exchange. The present study was carried out to determine the effects on Na(+)/H(+) exchange of modifying the endogenous membrane phospholipids through the addition of exogenous phospholipase D. Incubation of 0.825 U of phospholipase D with 1 mg of porcine cardiac sarcolemmal vesicles hydrolyzed 34 +/- 2% of the sarcolemmal phosphatidylcholine and increased phosphatidic acid 10.2 +/- 0.5-fold. Treatment of vesicles with phospholipase D resulted in a 46 +/- 2% inhibition of Na(+)/H(+) exchange. Na(+)/H(+) exchange was measured as a function of reaction time, extravesicular pH, and extravesicular Na(+). All of these parameters of Na(+)/H(+) exchange were inhibited following phospholipase D treatment compared with untreated controls. Passive efflux of Na(+) was unaffected. Treatment of sarcolemmal vesicles with phospholipase C had no effect on Na(+)/H(+) exchange. We conclude that phospholipase D-induced changes in the cardiac sarcolemmal membrane phospholipid environment alter Na(+)/H(+) exchange.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of phospholipase C on the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles.

We have examined the effects of phospholipase C pretreatment on Ca2+ transport in highly purified canine cardiac sarcolemmal vesicles. Na+-Ca2+ exchange, measured as Nai+-dependent Ca2+ uptake, is stimulated when 10-70% of the membrane phospholipid has been hydrolyzed. Although the phospholipase C treatment also increases sarcolemmal passive Ca2+ flux, the membrane maintains a sufficient permea...

متن کامل

Effects of Phospholipase C on the Na + - Ca 2 + Exchange and Ca 2 + Permeability of Cardiac

We have examined the effects of phospholipase C pretreatment on Ca2+ transport in highly purified canine cardiac sarcolemmal vesicles. Na+-Ca2+ exchange, measured as Nai+-dependent Caz+ uptake, is stimulated when 10-70% of the membrane phospholipid has been hydrolyzed. Although the phospholipase C treatment also increases sarcolemmal passive Ca2+ flux, the membrane maintains a sufficient permea...

متن کامل

Na+-Ca2+ exchange in inside-out cardiac sarcolemmal vesicles.

We have measured Na+-CaZ+ exchange in the insideout vesicles of highly purified cardiac sarcolemma from dog ventricles. This was accomplished in a mixed population of Sarcolemmal vesicles by first loading the inside-out vesicles with Na+ through the action of the glycoside-sensitive, ATP-dependent Na' pump. Due to the asymmetric nature of active Na' transport, this will only occur in inside-out...

متن کامل

Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.

Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake int...

متن کامل

Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment.

The Na+-Ca2+ exchange activity of purified canine cardiac sarcolemmal vesicles can be strikingly stimulated if the vesicles are pretreated with a serine or thiol proteinase. The Km (Ca2+) for Na+i-dependent Ca2+ influx is reduced from 22.2 +/- 2.3 to 8.1 +/- 0.3 microM while Vmax is increased from 15.1 +/- 3.6 to 18.9 +/- 5.2 nmol Ca2+ . mg protein-1 . s-1. Na+o-dependent Ca2+ efflux is also st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000